Evidence for an additional Heinrich event between H5 and H6 in the Labrador Sea

نویسندگان

  • Harunur Rashid
  • Reinhard Hesse
  • David J. W. Piper
چکیده

[1] An additional Heinrich ice-rafting event is identified between Heinrich events 5 and 6 in eight cores from the Labrador Sea and the northwest Atlantic Ocean. It is characterized by sediment rich in detrital carbonate (40% CaCO3) with high concentration of floating dropstones, high coarse-fraction (% > 150 mm) content, and has a sharp contact with the underlying but grades into the overlying hemipelagic sediment. It also shows lighter dONpl values, indicating freshening due to iceberg rafting and/or meltwater discharge. This event is correlated with Dansgaard-Oeschger event 14 and interpreted as an additional Heinrich event, H5a. The thickness of H5a in the Labrador Sea reaches up to 220 cm. This additional Heinrich event has also been reported in cores PS2644 and SO82-5 from the northern North Atlantic. With the recognition of H5a the temporal spacing between Heinrich events 1 to 6 becomes more uniform ( 7 ka).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes

Heinrich events, identified as enhanced ice-rafted detritus (IRD) in North Atlantic deep sea sediments (Heinrich, 1988; Hemming, 2004) have classically been attributed to Laurentide ice-sheet (LIS) instabilities (MacAyeal, 1993; Calov et al., 2002; Hulbe et al., 2004) and assumed to lead to important disruptions of the Atlantic meridional overturning circulation (AMOC) and North Atlantic deep w...

متن کامل

Ar ages and 40 Ar ) concentrations of fine - grained sediment fractions from North Atlantic Heinrich layers

New KrAr ages based on ArrAr incremental heating of -2and 2–20-mm size fractions of the well-characterized, carbonate-bearing Heinrich layers of core V28-82 in the eastern North Atlantic are 846–1049 Ma, overlapping with conventional KrAr ages from the same Heinrich layers on the Dreizack seamounts of 844–1074 Ma. This agreement suggests the equivalence of the methods in fine-grained terrigenou...

متن کامل

Rare-earth elements and Nd and Pbisotopes as source indicatorsfor Labrador Sea clay-size sediments during Heinrich event 2

Elemental abundances and Nd and Pb isotope ratios were determined on samples from the carbonate-free, clay-size fractions of sediments from intervals above, within, and below Heinrich event 2 (H-2) in core HU87-9 from the Northwest Labrador Sea slope. In HU87-9, rare-earth element (REE) distributions and elemental concentrations within the H-2 event are distinct from those outside this event. e...

متن کامل

Internal mobility in a double-stranded B DNA hexamer and undecamer. A time-dependent proton-proton nuclear Overhauser enhancement study.

The internal mobility of the deoxyribose H2'-H2" and base C(H5)-C(H6) and T(CH3)-T(H6) vectors has been investigated by means of time-dependent nuclear Overhauser enhancement (NOE) measurements in a B DNA hexamer and undecamer. Cross-relaxation rates between these proton pairs are determined from the initial slopes of the time development of the NOEs, and, as the interproton distances between t...

متن کامل

Binge/purge Oscillations of the Laurentide Ice Sheet as a Cause of the North Atlantic's Heinrich Events

Ice-rafted debris in sediment cores from the North Atlantic suggests that the Laurentide ice sheet (LIS) periodically disgorged icebergs in brief but violent episodes which occurred approximately every 7,000 years. Here, I propose that Heinrich events (i.e., what these episodes are called) were caused by free oscillations in the flow of the Laurentide ice sheet which arose because the floor of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003